Challenger App

No.1 PSC Learning App

1M+ Downloads
The diagonals of two squares are in the ratio 5 : 2. The ratio of their area is

A5 : 6

B25 : 4

C5 : 4

D125 : 8

Answer:

B. 25 : 4

Read Explanation:

Area of square =12×(diagonal)2=\frac{1}{2}\times{(diagonal)^2}

Required ratio =12(d1)212(d2)2=\frac{\frac{1}{2}(d1)^2}{\frac{1}{2}(d2)^2}

=(d1d2)2=(\frac{d1}{d2})^2

=(52)2=(\frac{5}{2})^2

=254=\frac{25}{4}


Related Questions:

The base of a triangle is equal to the perimeter of a square whose diagonal is 929\sqrt{2}cm, and its height is equal to the side of a square whose area is 144 cm2. The area of the triangle (in cm2) is:

ഒരു ഗോളത്തിന്റെ ഉപരിതല വിസ്തീർണം 154 cm³ ആയാൽ അതിന്റെ വ്യാസം കാണുക.
What is the perimeter of a circular plot which occupies an area of 616 square meter?
The perimeter of a rectangle is equal to the perimeter of a square. If the length and the breadth of the rectangle are 10 cm and 8 cm, respectively, then what will be the area of the square?
28 cm ആരമുള്ള അർദ്ധഗോളത്തിന്റെ ഉപരിതലവിസ്തീർണം എത്ര?