App Logo

No.1 PSC Learning App

1M+ Downloads
The time taken by the boat can travel 240 km distance along the stream is equal to the time taken by the boat can travel 144 km distance against the stream. The speed of the boat is 20 km/hr. Find the speed of the stream.

A3 km/hr

B2 km/hr

C5 km/hr

D4 km/hr

Answer:

C. 5 km/hr

Read Explanation:

Explanation: 

Speed of the boat = 20 km/hr

Downstream distance = 240 km

Upstream distance = 144 km

Speed of the stream = y km/hr

240(20+y)=T\frac{240}{(20 + y)} = T —– (1)

144(20y)=T\frac{144}{(20-y)} = T —— (2)

Equate both the equation

240(20+y)=144(20y)\frac{240}{(20 + y)} =\frac{144}{(20-y)}

5(20+y)=3(20y)\frac{5}{(20 + y)} = \frac{3}{(20-y)}

60 – 3y = 100 + 5y

5y = 40

y = 5 km/hr


Related Questions:

നിശ്ചല ജലത്തിൽ ഒരു ബോട്ടിന്റെ വേഗത മണിക്കൂറിൽ 12 കി.മീ. ആണ്. 'A', 'B' എന്നീ രണ്ട് പോയിന്റുകൾക്കിടയിൽ, ബോട്ടിന് മുകളിലേക്ക് പോകാൻ 6 മണിക്കൂറും, താഴേക്ക് 4 മണിക്കൂർ സമയവും എടുക്കും. നദിയിലെ ഒഴുക്കിന്റെ വേഗത എത്രയാണ് ?
Speed of a speed-boat when moving in the direction parallel to the direction of the current is 16 km/hr. Speed of the current is 3 km/hr. So the speed of the boat against the current will be (in km/hr)
A boat takes thrice the time in moving a certain distance upstream than downstream. Find the ratio of speed of boat in still water to that of speed of current.
The upstream speed of the boat is 40 km/hr and the speed of the boat in still water is 55 km/hr. What is the downstream speed of the boat?
A boat goes upstream at 36 km/h and downstream at 40 km/h. The distance covered in each trip being the same, find the speed of boat in still water.