Challenger App

No.1 PSC Learning App

1M+ Downloads
There are two pipes leading to a tank. If pipe X alone is opened, the tank will be filled in 20 minutes. If pipe Y alone is opened, the tank will be filled in 25 minutes. Both pipes were opened together. After some time, pipe Y was closed. If it takes 15 minutes to fill the tank completely, then for how long is the pipe X left open

A10 minutes 30 seconds

B8 minute 45 second

C7 minutes 15 seconds

D9 minutes 40 seconds

Answer:

B. 8 minute 45 second

Read Explanation:

  • The fundamental concept in time and work problems, including pipe and cisterns, is the 'rate of work'. This refers to the amount of work done per unit of time.

  • If pipe X fills the tank in 20 minutes, its rate of filling is 1/20 of the tank per minute.

  • Similarly, if pipe Y fills the tank in 25 minutes, its rate of filling is 1/25 of the tank per minute.

  • When both pipes X and Y are opened together, their rates add up.

  • Combined rate of X and Y = Rate of X + Rate of Y = (1/20 + 1/25) tank per minute.

  • To add these fractions, find a common denominator, which is 100.

  • (1/20 + 1/25) = (5/100 + 4/100) = 9/100 tank per minute.

  • Let 't' be the time (in minutes) for which both pipes were opened together.

  • In time 't', the work done by both pipes together is (9/100) * t.

  • After time 't', pipe Y is closed, and pipe X continues to fill the remaining part of the tank.

  • The total time taken to fill the tank is 15 minutes. This means pipe X was open for the entire 15 minutes.

  • The portion of the tank filled by pipe X alone in the remaining time is (15 - t) minutes.

  • The work done by pipe X alone in (15 - t) minutes is (1/20) * (15 - t).

  • The sum of the work done by both pipes together and the work done by pipe X alone must equal the total work (filling 1 whole tank).

  • Equation: (9/100) * t + (1/20) * (15 - t) = 1

  1. Multiply the entire equation by 100 to eliminate denominators:

  2. 9t + 5(15 - t) = 100

  3. Expand the equation: 9t + 75 - 5t = 100

  4. Simplify: 4t + 75 = 100

  5. Isolate 't': 4t = 100 - 75

  6. 4t = 25

  7. Solve for 't': t = 25 / 4 minutes

  • 't' represents the time both pipes were open together.

  • t = 25/4 minutes = 6.25 minutes.

  • The question asks for how long pipe X was left open after pipe Y was closed. This is the time when only pipe X was working.

  • Time pipe X worked alone = Total time - Time both worked together

  • Time pipe X worked alone = 15 minutes - t

  • Time pipe X worked alone = 15 - 6.25 minutes = 8.75 minutes.

  • Convert 0.75 minutes to seconds: 0.75 * 60 seconds = 45 seconds.

  • Therefore, pipe X was left open for 8 minutes and 45 seconds after pipe Y was closed.


Related Questions:

3 പുരുഷന്മാർക്കും 4 കുട്ടികൾക്കും 7 ദിവസത്തിനുള്ളിൽ 756 രൂപ സമ്പാദിക്കാം, 11 പുരുഷന്മാർക്കും 13 കുട്ടികൾക്കും 8 ദിവസത്തിനുള്ളിൽ 3008 രൂപ സമ്പാദിക്കാൻ കഴിയും, എത്ര ദിവസത്തിനുള്ളിൽ 7 പുരുഷന്മാർക്കും 9 കുട്ടികൾക്കും 2480 രൂപ സമ്പാദിക്കാൻ കഴിയും?
Sankar and Vishnu work alternately in a tailoring shop on an order of stitching 21 suits. Sankar starts the work, stitches 3 suits in two days, and takes a break, during which Vishnu stitches 3 suits in three days, and then takes a break. This pattern is repeated till all the 21 suits are stitched. How many days did it take the duo to complete the work?
ആരുഷും മഹിയും ചേർന്ന് 10 ദിവസം കൊണ്ട് ഒരു പണി ചെയ്യാം. ആരുഷിന് മാത്രം 15 ദിവസത്തിനുള്ളിൽ ഒരേ ജോലി ചെയ്യാൻ കഴിയുമെങ്കിൽ, മഹിക്ക് മാത്രം എത്ര ദിവസമെടുക്കും അതേ ജോലി ചെയ്യാൻ?
ഒരു പ്രത്യേക ജോലി ചെയ്തു തീർക്കാൻ അജയന് 6 ദിവസം വേണ്ടിവരും. അതേ ജോലി ചെയ്തു തീർക്കാൻ വിജയന് 3 ദിവസം മതിയാകും. രണ്ടുപേരും കൂടി ഒരേസമയം ഈ ജോലി ചെയ്തു തീർക്കാൻ എത്ര ദിവസം വേണം ?
Two men and 7 women can complete a work in 28 days, whereas 6 men and 16 women can do the same work in 11 days. In how many days will 5 men and 4 women, working together, complete the same work?