Challenger App

No.1 PSC Learning App

1M+ Downloads

A can complete 331333\frac{1}{3} % of a work in 5 days and B can complete 40% of the same work in 10 days. They work together for 5 days and then B left the work. A alone will complete the remaining work in:

A712days7\frac{1}{2} days

B5 days

C7 days

D512days5\frac{1}{2}days

Answer:

C. 7 days

Read Explanation:

Solution:

Given:

A can complete the 33(1/3)% work in 5days

B can complete the 40% work in 10days

Calculation:

331333\frac{1}{3}%=13=\frac{1}{3}

40%=25=\frac{2}{5}

Let the total work be 15 units

According to question:

A can complete the work 5 units of work in 5 days

B can complete the work 6 units of work in 10days

Efficiency of A = 5/5 = 1units/day

Efficiency of B = (6/10)units/day

When they work together:

Efficiency of the work = 1+ (6/10) = 16/10units/day

According to question they work for 5days

Work completed in 5days = (16/10) × 5 = 8units

Remaining work = 15 – 8 = 7units

A alone the remaining work in = total work / efficiency = 7 / 1 = 7days

∴  the required answer = 7days


Related Questions:

A and B can do a work in 12 days, B and C can do the same work in 15 days, and C and A can do the same work in 20 days. A, B and C will complete the work together in:
മനുവിന് ഒരു ജോലി ചെയ്യാൻ 10 ദിവസം വേണം അനുവിന് അത് ചെയ്ത് തീർക്കാൻ 15 ദിവസം വേണം. എങ്കിൽ രണ്ടു പേരും ചേർന്ന് ഈ ജോലി എത്ര ദിവസം കൊണ്ട് ചെയ്തു തീർക്കും?
20 ആളുകൾ 20 ദിവസം കൊണ്ട് ചെയ്തു തീർക്കുന്ന ജോലി ചെയ്യാൻ 10 പേർക്ക് എത്ര ദിവസം വേണം ?
A and B can together finish a work in 30 days. They worked together for 20 days and then B left. After another 20 days A finished the remaining work. In how many days A alone can finish the job?
A and B working separately can do a piece of work in 10 days and 15 days respectively. If they work on alternate days beginning with A, in how many days will the work be completed ?