Challenger App

No.1 PSC Learning App

1M+ Downloads
Determine the largest 4-digit number that is exactly divisible by 15,25,40 and 75.

A9600

B9975

C9999

D9960

Answer:

A. 9600

Read Explanation:

To find the largest 4-digit number exactly divisible by 15, 25, 40, and 75, follow these steps:

Prime factorization:

(15=3×5)(15 = 3 \times 5)

(25=52)(25 = 5^2)

(40=23×5)(40 = 2^3 \times 5)

(75 = 3 \times 5^2)#

LCM takes highest powers:

\text{LCM} = 2^3 \times 3 \times 5^2 = 8 \times 3 \times 25 = 600</p><h3style="color:rgb(0,0,0);"></h3><pdatapxy="true"style="color:rgb(0,0,0);margintop:2px;marginbottom:2px;">Largest4digitnumber=9999</p><pdatapxy="true"style="color:rgb(0,0,0);margintop:2px;marginbottom:2px;"><br></p><h3 style="color: rgb(0,0,0);"></h3><p data-pxy="true" style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px;">Largest 4-digit number = 9999</p><p data-pxy="true" style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px;"><br>\frac{9999}{600} \approx 16.66</p><pdatapxy="true"style="color:rgb(0,0,0);margintop:2px;marginbottom:2px;">Sothegreatestintegermultipleis<b>16</b>:<br><br></p><p data-pxy="true" style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px;">So the greatest integer multiple is <b>16</b>:<br><br>600 \times 16 = 9600$

9600 is the largest 4-digit number exactly divisible by 15, 25, 40, and 75.


Related Questions:

What is the greatest number of six digits, which when divided by each of 16, 24, 72 and 84, leaves the remainder 15?
ഒരു കച്ചവടക്കാരന്റെ കയ്യിൽ 24 പേനകളും 36 പെൻസിലുകളും 60 നോട്ട് ബുക്കുകളും ഉണ്ട്. ഇവയിൽ എല്ലാ ഐറ്റങ്ങളും ഉൾപ്പെടുത്തി ഒന്നും അവശേഷിക്കാതെ ഇവയെ പാക്കറ്റിൽ ആക്കുകയാണെങ്കിൽ അയാൾക്ക് ഉണ്ടാക്കാൻ കഴിയുന്ന പരമാവധി പാക്കറ്റുകൾ എത്ര ?

The greatest among6100^6\sqrt{100}and312^3\sqrt{12}and3\sqrt3 is:

Five bells first begin to toll together and then at intervals of 3 s, 5s, 7s, 8s and 10 s. Find after what interval they will gain toll together?
Let X be the least number which when divided by 15, 18, 20, 27 the reminder in each case is 10 and X is a multiple of 31. What least number should be added to X to make it a perfect square ?