A9600
B9975
C9999
D9960
Answer:
A. 9600
Read Explanation:
To find the largest 4-digit number exactly divisible by 15, 25, 40, and 75, follow these steps:
Prime factorization:
(15=3×5)
(25=52)
(40=23×5)
(75 = 3 \times 5^2)#
LCM takes highest powers:
\text{LCM} = 2^3 \times 3 \times 5^2 = 8 \times 3 \times 25 = 600</p><h3style="color:rgb(0,0,0);"></h3><pdata−pxy="true"style="color:rgb(0,0,0);margin−top:2px;margin−bottom:2px;">Largest4−digitnumber=9999</p><pdata−pxy="true"style="color:rgb(0,0,0);margin−top:2px;margin−bottom:2px;"><br>\frac{9999}{600} \approx 16.66</p><pdata−pxy="true"style="color:rgb(0,0,0);margin−top:2px;margin−bottom:2px;">Sothegreatestintegermultipleis<b>16</b>:<br><br>600 \times 16 = 9600$
9600 is the largest 4-digit number exactly divisible by 15, 25, 40, and 75.
