App Logo

No.1 PSC Learning App

1M+ Downloads

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}

Acosecθ1cosec\theta-1

B1+sinθ1+sin\theta

Ccotθcot\theta

D1+cosθ1+cos\theta

Answer:

1+cosθ1+cos\theta

Read Explanation:

(cosecθcotθ)2=1cosθA(cosec\theta-cot\theta)^2=\frac{1-cos\theta}{A}

(cosecθcotθ)2=(1sinθcosθsinθ)2(cosec\theta-cot\theta)^2=(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta})^2

=(1cosθsinθ)2=(\frac{1-cos\theta}{sin\theta})^2

=(1cosθ)2sin2θ=\frac{(1-cos\theta)^2}{sin^2\theta}

=(1cosθ)2(1cos2θ)=\frac{(1-cos\theta)^2}{(1-cos^2\theta)}

=(1cosθ)(1cosθ)((1cosθ)(1+cosθ)=\frac{(1-cos\theta)(1-cos\theta)}{((1-cos\theta)(1+cos\theta)}

=(1cosθ)(1+cosθ)=\frac{(1-cos\theta)}{(1+cos\theta)}

which is equal to (1cosθ)A\frac{(1-cos\theta)}{A}


Related Questions:

(3x - 6)/x - (4y -6)/y + (6z + 6)/z = 0 ആയാൽ (1/x - 1/y - 1/z) എത്രയാണ്?

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is:

(2x)(2y)=8,(9x)(3y)=81(2^x)(2^y)=8 , (9^x)(3^y)=81So what is the value of x and y?

Find the degree of the polynomial : (x² + 2)²

If x2+1/x2=66 x^2+1/x^2=66 findx1/xx-1/x