App Logo

No.1 PSC Learning App

1M+ Downloads

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

A7760

B240

C8000

D8240

Answer:

A. 7760

Read Explanation:

Solution:

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3×4×203\times{4}\times{20}       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 ×\times (202 – 12)

⇒ a3 + b3 = 20 ×\times (400 – 12)

⇒ a3 + b3 = 20 ×\times 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760


Related Questions:

(b – c)(b + c) + (c – a)(c + a) + (a – b) (a + b) എന്നതിൻ്റെ മൂല്യം കണ്ടെത്തുക

Solve (y24)/3=20(y^2 - 4)/3 = 20.

What is the value of (x + 1)(3x – 4)?

The Sum of the roots of the quadratic equation 4x2+7x21=04x^2+7x-21=0 is:

The fraction to be added toy210y/11+11/121y^2-10y/11 +11/121make it a perfect square is: