App Logo

No.1 PSC Learning App

1M+ Downloads

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

A7760

B240

C8000

D8240

Answer:

A. 7760

Read Explanation:

Solution:

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3×4×203\times{4}\times{20}       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 ×\times (202 – 12)

⇒ a3 + b3 = 20 ×\times (400 – 12)

⇒ a3 + b3 = 20 ×\times 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760


Related Questions:

8a - b²=24, 8b + b² = 56 ആയാൽ a + b എത്ര?

If x2+1/x2=66 x^2+1/x^2=66 findx1/xx-1/x

If x2+1/x2=38 x^2+1/x^2=38 findx1/xx-1/x

x # y = xy + x + y ആയാൽ 5#4 - 1#2 എത്ര?

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.