App Logo

No.1 PSC Learning App

1M+ Downloads

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

A7760

B240

C8000

D8240

Answer:

A. 7760

Read Explanation:

Solution:

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3×4×203\times{4}\times{20}       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 ×\times (202 – 12)

⇒ a3 + b3 = 20 ×\times (400 – 12)

⇒ a3 + b3 = 20 ×\times 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760


Related Questions:

x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

രണ്ട് സംഖ്യകളിൽ ആദ്യത്തേത് രണ്ടാമത്തേതിന്റെ അഞ്ചിരട്ടിയാണ് . സംഖ്യകളുടെ തുക 96 ആയാൽ ചെറിയ സംഖ്യ ഏത്?
The product of a number and 2 more than that is 168, what are the numbers?
ഒരു സംഖ്യയുടെ 4 മടങ്ങിനെക്കാൾ 5 കുറവ്, ആ സംഖ്യയുടെ 3 മടങ്ങിനെക്കാൾ 3 കൂടുതലാണ്. എന്നാൽ സംഖ്യ ഏത് ?