Challenger App

No.1 PSC Learning App

1M+ Downloads

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.

A12

B14

C10

D16

Answer:

B. 14

Read Explanation:

Solution:

Given:

(a + b + c) = 17, and (a2 + b2 + c2) = 101

Formula used:

(a + b + c)2 = (a2 + b2 + c2) + 2 (ab + bc +ca)

Calculation:

(a + b + c)2 = (a2 + b+ c2) + 2 (ab + bc +ca)

⇒ 172 = 101 + 2 (ab + bc +ca)

⇒  (ab + bc +ca) = 94

 (a - b)2 + (b - c)2 + (c - a)2.

⇒ 2 (a2 + b2 + c2) - 2 (ab + bc +ca)

⇒  101×22×94=14101\times{2}-2\times{94}=14


Related Questions:

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is:

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

Find the nature of roots of the quadratic equation:

x2+16x+64=0x^2+16x+64=0

-125,965,-367______എന്നീ നാലു സംഖ്യകളുടെ തുക പൂജ്യം ആയാൽ നാലാമത്തെ സംഖ്യ ഏത്?
x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?