Challenger App

No.1 PSC Learning App

1M+ Downloads

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.

A12

B14

C10

D16

Answer:

B. 14

Read Explanation:

Solution:

Given:

(a + b + c) = 17, and (a2 + b2 + c2) = 101

Formula used:

(a + b + c)2 = (a2 + b2 + c2) + 2 (ab + bc +ca)

Calculation:

(a + b + c)2 = (a2 + b+ c2) + 2 (ab + bc +ca)

⇒ 172 = 101 + 2 (ab + bc +ca)

⇒  (ab + bc +ca) = 94

 (a - b)2 + (b - c)2 + (c - a)2.

⇒ 2 (a2 + b2 + c2) - 2 (ab + bc +ca)

⇒  101×22×94=14101\times{2}-2\times{94}=14


Related Questions:

If p and q are the solutions of the equation aX2 + bx+c=0, where a, b and c are positive numbers, then

x and y are two positive integers x-y and x+y are two prime numbers. Then y is:
തുടർച്ചയായ രണ്ട് ഇരട്ട സംഖ്യകളുടെ വർഗ്ഗങ്ങളുടെ വ്യത്യാസം 68 ആയാൽ സംഖ്യകൾ ഏത്?
If m + 1/m = 4 then what is m³ + 1/m³

If 2(a2+b2)=(a+b)22(a^2 + b^2) = (a + b)^2 then,