Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is:

A-1

B-4

C1

D4

Answer:

D. 4

Read Explanation:

Solution:

Given:

If a + b + c = 6, a2+b2+c2=30a^2+b^2+c^2=30 and a3+b4+c3=165a^3+b^4+c^3=165

Concept used:

(a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)

Calculation:

(a+b+c)2=a2+b2+c2+2(ab+bc+ca)(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

⇒ 62 = 30 + 2 (ab + bc + ca)

⇒ (ab + bc + ca) = 62=3\frac{6}{2} = 3

⇒ a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

1653abc=6×(303)165-3abc = 6\times{(30-3)}

1653abc=6×27165-3abc = 6\times{27}

⇒ 3abc = 165 - 162

⇒ abc = 1

4abc=4×1=44abc = 4\times{1} = 4


Related Questions:

What is the value of (x + 1)(3x – 4)?

If a + b =5 and ab = 6 finda3+b3a^3+b^3

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?

If p and q are the solutions of the equation aX2 + bx+c=0, where a, b and c are positive numbers, then