Challenger App

No.1 PSC Learning App

1M+ Downloads
If the sum of two numbers is 11 and the sum of their squares is 65, then the sum of their cubes will be:

A407

B576

C615

D355

Answer:

A. 407

Read Explanation:

Given:

The sum of two numbers = 11

The sum of their squares = 65

Formula:

(x+y)2=x2+y2+2xy(x+y)^2=x^2+y^2+2xy

x3+y3=(x+y)[(x+y)23xy]x^3+y^3=(x+y)[(x+y)^2-3xy]

Calculation:

Let two numbers be x and y.

x + y = 11

x2+y2=65x^2+y^2=65

⇒ (x + y)2 = x2 + y2 + 2xy

⇒ 112 = 65 + 2xy

⇒ 2xy = 121 - 65

xy=562xy = \frac{56}{2}

⇒ xy = 28

x3 + y3 = (x + y) [(x + y)2 - 3xy]

⇒ x3 + y3 = 11 (112 - 3×283\times{28})

⇒ x3 + y3 = 11×(12184)11\times{(121 - 84)}

⇒ x3 + y3 = 11×3711\times{37}

∴ x3 + y3 = 407

Shortcut Trick

Let two numbers are x and y.

x + y = 11

x2+y2=65x^2+y^2=65

Put x = 7 and y = 4, then the condition is satisfied.

x3+y3x^3+y^3

73+437^3+4^3

⇒ 343 + 64

⇒ 407


Related Questions:

If points (a,0),(0,b)and(1,1) are collinear, then (a1+b1)(a^{-1} + b^{-1}) will be equal to :

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

Solve (y24)/3=20(y^2 - 4)/3 = 20.

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.