Given:
The sum of two numbers = 11
The sum of their squares = 65
Formula:
(x+y)2=x2+y2+2xy
x3+y3=(x+y)[(x+y)2−3xy]
Calculation:
Let two numbers be x and y.
x + y = 11
x2+y2=65
⇒ (x + y)2 = x2 + y2 + 2xy
⇒ 112 = 65 + 2xy
⇒ 2xy = 121 - 65
⇒ xy=256
⇒ xy = 28
x3 + y3 = (x + y) [(x + y)2 - 3xy]
⇒ x3 + y3 = 11 (112 - 3×28)
⇒ x3 + y3 = 11×(121−84)
⇒ x3 + y3 = 11×37
∴ x3 + y3 = 407
Shortcut Trick
Let two numbers are x and y.
x + y = 11
x2+y2=65
Put x = 7 and y = 4, then the condition is satisfied.
x3+y3
⇒ 73+43
⇒ 343 + 64
⇒ 407