In an Ap if the sum of the first 10 terms is equal to the sum of first 20 terms, then the sum of first 30 terms is :A5B1C0D10Answer: C. 0 Read Explanation: S10=S20S_{10}=S_{20}S10=S20n2(2a+(n−1)d)\frac{n}{2}(2a+(n-1)d)2n(2a+(n−1)d)102(2a+(10−1)d\frac{10}{2}(2a+(10-1)d210(2a+(10−1)d=202(2a+(20−1)d)=\frac{20}{2}(2a+(20-1)d)=220(2a+(20−1)d)5(2a+9d)=10(2a+19d)5(2a+9d)=10(2a+19d)5(2a+9d)=10(2a+19d)(2a+9d)=105(2a+19d)(2a+9d)=\frac{10}{5}(2a+19d)(2a+9d)=510(2a+19d)(2a+9d)=2(2a+19d)(2a+9d)=2(2a+19d)(2a+9d)=2(2a+19d)2a+9d=4a+38d2a+9d=4a+38d2a+9d=4a+38d4a−2a+38d−9d=04a-2a+38d-9d=04a−2a+38d−9d=02a+29d=02a+29d=02a+29d=0S30=302(2a+(30−1)d)S_{30}=\frac{30}{2}(2a+(30-1)d)S30=230(2a+(30−1)d)15(2a+29d)=15(0)=015(2a+29d)=15(0)=015(2a+29d)=15(0)=0 Read more in App