Challenger App

No.1 PSC Learning App

1M+ Downloads

limx0sin(ax)bx=\lim_{x \to 0} \frac{sin (ax)}{bx} =

Aa/b

Bb/a

Ca

Db

Answer:

A. a/b

Read Explanation:

limx0sin(ax)bx\lim_{x \to 0} \frac{sin (ax)}{bx}

=limx0sin(ax)ax×ab=\lim_{x \to 0} \frac{sin (ax)}{ax} \times \frac{a}{b}

=1×ab=ab= 1 \times \frac{a}{b}= \frac{a}{b}


Related Questions:

(1sinxcos2x)dx=\int(\frac{1- sinx}{cos^2x})dx =

limx0eaxebxx=\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}=

y=x²+3x+2 ; d²y/dx²=

x=acosθ,y=asinθ;dydx=x=acosθ , y=asinθ ; \frac{dy}{dx}=

Seven bells ring at intervals of 2, 3, 4, 6, 8, 9 and 12 minutes, respectively. They started ringing simultaneously at 7.10 in the morning. What will be the next time when they all ring simultaneously?