App Logo

No.1 PSC Learning App

1M+ Downloads

A=[123],B=[2  3  4]A=\begin{bmatrix} 1 \\ 2 \\ 3\end{bmatrix}, B=\begin{bmatrix}2 \ \ 3 \ \ 4 \end{bmatrix} ; AB=?

AAB=[2    3    44   6    86    9    12] AB=\begin{bmatrix}-2 \ \ \ \ 3\ \ \ \ 4\\ 4 \ \ \ -6\ \ \ \ 8\\ 6\ \ \ \ 9 \ \ \ \ 12 \end{bmatrix}

BAB=[2    3    44   6    86    9    12] AB=\begin{bmatrix}2 \ \ \ \ 3\ \ \ \ 4\\ 4 \ \ \ 6\ \ \ \ -8\\ 6\ \ \ \ 9 \ \ \ \ 12 \end{bmatrix}

CAB=[2    3    44   6    86    9    12] AB=\begin{bmatrix}2 \ \ \ \ 3\ \ \ \ 4\\ 4 \ \ \ 6\ \ \ \ 8\\ 6\ \ \ \ 9 \ \ \ \ 12 \end{bmatrix}

DAB=[28    3    441   6    86    9    12] AB=\begin{bmatrix}28 \ \ \ \ 3\ \ \ \ 4\\ 41 \ \ \ 6\ \ \ \ 8\\ 6\ \ \ \ 9 \ \ \ \ 12 \end{bmatrix}

Answer:

AB=[2    3    44   6    86    9    12] AB=\begin{bmatrix}2 \ \ \ \ 3\ \ \ \ 4\\ 4 \ \ \ 6\ \ \ \ 8\\ 6\ \ \ \ 9 \ \ \ \ 12 \end{bmatrix}

Read Explanation:

A=[123],B=[2  3  4]A=\begin{bmatrix} 1 \\ 2 \\ 3\end{bmatrix}, B=\begin{bmatrix}2 \ \ 3 \ \ 4 \end{bmatrix}

AB=[(1×2)    (1×3)    (1×4)(2×2)   (2×3)    (2×4)(3×2)    (3×3)    (3×4)] AB=\begin{bmatrix}(1\times 2) \ \ \ \ (1 \times 3)\ \ \ \ (1 \times 4)\\ (2 \times 2) \ \ \ (2\times 3) \ \ \ \ (2 \times 4)\\ (3 \times 2)\ \ \ \ (3\times 3) \ \ \ \ (3 \times 4)\end{bmatrix}

AB=[2    3    44   6    86    9    12] AB=\begin{bmatrix}2 \ \ \ \ 3\ \ \ \ 4\\ 4 \ \ \ 6\ \ \ \ 8\\ 6\ \ \ \ 9 \ \ \ \ 12 \end{bmatrix}


Related Questions:

A ഒരു skew symmetrix മാട്രിക്സും n ഒരു ഇരട്ട സംഖ്യയും ആണെങ്കിൽ Aⁿ ഒരു
2x-3y = 0 ; 4x-6y = 0 എന്ന സമവാക്യ കൂട്ടത്തിന്റെ പരിഹാരങ്ങളെ കുറിച്ച ശരിയായത് ഏത്?
ഒരു ന്യൂന സമമിത മാട്രിക്സ് A ക്ക്
A എന്ന മാട്രിക്സും B എന്ന മാട്രിക്സും ഹെർമിഷ്യൻ മാട്രിക്സ് ആയാൽ AB - BA
ക്രമം 4 ആയ മാട്രിക്സ് A യുടെ സാരണി 4 ആയാൽ 3A യുടെ സാരണി എത്ര?