App Logo

No.1 PSC Learning App

1M+ Downloads

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)

A36

B24

C42

D48

Answer:

A. 36

Read Explanation:

Solution:

Given : 

(a + b + c) = 12, (a2 + b2 + c2) = 50

Formula Used : 

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)

(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)

Calculation : 

⇒ 144 = 50 + 2(ab + bc +ac)

⇒ (ab + bc +ac) = 942=47\frac{94}{2} = 47

Now,

⇒ (a3 + b3 + c3 - 3abc)

⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)

⇒ 3×12=363\times{12} = 36

∴ The correct answer is 36.


Related Questions:

a+b =12, ab= 22 ആയാൽ a² + b² എത്രയാണ്?
If m and n are positive integers and 4m + 9n is a multiple of 11, which of the following is also a multiple of 11?

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

100 രൂപ ചില്ലറ ആക്കിയപ്പോൾ 20 ന്റെയും 10 ന്റെയും നോട്ടുകളാണ് കിട്ടിയത്. ആകെ 7 നോട്ടുകൾ എങ്കിൽ 20 എത്ര നോട്ടുകൾ ഉണ്ട് ?

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)