App Logo

No.1 PSC Learning App

1M+ Downloads

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)

A36

B24

C42

D48

Answer:

A. 36

Read Explanation:

Solution:

Given : 

(a + b + c) = 12, (a2 + b2 + c2) = 50

Formula Used : 

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)

(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)

Calculation : 

⇒ 144 = 50 + 2(ab + bc +ac)

⇒ (ab + bc +ac) = 942=47\frac{94}{2} = 47

Now,

⇒ (a3 + b3 + c3 - 3abc)

⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)

⇒ 3×12=363\times{12} = 36

∴ The correct answer is 36.


Related Questions:

If x2+1/x2=34x ^ 2 + 1 / x ^ 2 = 34 find the value of x+1/xx + 1 / x

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

If x4+1x4=25716x^4+\frac{1}{x^4}=\frac{257}{16} then find 813(x3+1x3)\frac{8}{13}(x^3+\frac{1}{x^3}), where x>0.