Solution:
Given :
(a + b + c) = 12, (a2 + b2 + c2) = 50
Formula Used :
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)
(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)
Calculation :
⇒ 144 = 50 + 2(ab + bc +ac)
⇒ (ab + bc +ac) = 294=47
Now,
⇒ (a3 + b3 + c3 - 3abc)
⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)
⇒ 3×12=36
∴ The correct answer is 36.