App Logo

No.1 PSC Learning App

1M+ Downloads

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)

A36

B24

C42

D48

Answer:

A. 36

Read Explanation:

Solution:

Given : 

(a + b + c) = 12, (a2 + b2 + c2) = 50

Formula Used : 

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)

(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)

Calculation : 

⇒ 144 = 50 + 2(ab + bc +ac)

⇒ (ab + bc +ac) = 942=47\frac{94}{2} = 47

Now,

⇒ (a3 + b3 + c3 - 3abc)

⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)

⇒ 3×12=363\times{12} = 36

∴ The correct answer is 36.


Related Questions:

x # y = xy + x + y ആയാൽ 5#4 - 1#2 എത്ര?
ഒരു വാട്ടർ ബോട്ടിലിനു 15 രൂപ വിലയുണ്ട്. അതിൽ കുപ്പിയുടെയും വെള്ളത്തിന്റെയും വില ഉൾപ്പെടുന്നു. വെള്ളത്തിന് കുപ്പിയേക്കാൾ 12 രൂപ കൂടുതൽ ആണെങ്കിൽ കുപ്പിയുടെ വില എന്താണ്?

A student wrote x5x x3=x15 As a mathematics teacher, you:

If (a+1/a3)2=25(a+1/a-3)^2=25then find a2+1/a2a^2+1/a^2
x, y, z എന്നിവ ഏതെങ്കിലും മൂന്ന് സംഖ്യകളായാൽ, x - y - z നു തുല്യമായത്