App Logo

No.1 PSC Learning App

1M+ Downloads

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.

A186

B180

C164

D160

Answer:

B. 180

Read Explanation:

Solution:

Given:

x+12x=3x+\frac{1}{2x}=3

Formula used:

If ax+b(1x)=kax+b(\frac{1}{x})=k

On cubing both side we get

(ax)3 + (b/x)3 = k3 - 3kab

Calculation:

Multiply x+12x=3,x+\frac{1}{2x}=3, by 2 on both side

2(x+12x)=3×22(x + \frac{1}{2x}) = 3\times{2}

2x+1x=62x + \frac{1}{x} = 6

On cubing both side we get

(2x+1x)3=63(2x + \frac{1}{x})^3 = 6^3

8x3+1x3=2163×6×28x^3+\frac{1}{x^3}=216-3\times{6}\times{2}

8x3+1x3=216368x^3+\frac{1}{x^3}=216-36

8x3+1x3=180 8x^3+\frac{1}{x^3}=180

∴ The value of 8x3+1x38x^3+\frac{1}{x^3} is 180.


Related Questions:

ഒരു സംഖ്യയുടെ ഇരട്ടിയും പകുതിയും കാൽഭാഗവും ഒന്നും ചേർന്നാൽ 100 കിട്ടും എങ്കിൽ സംഖ്യയേത് ?
When 5 children from class A join class B, the number of children in both classes is the same. If 25 children from B, join A, then the number of children in A becomes double the number of children in B. The ratio of the number of children in A to those in B is:

If x2+1/x2=79x ^ 2 + 1 / x ^ 2 = 79 find the value of x+1/xx + 1 / x

x, y, z എന്നിവ ഏതെങ്കിലും മൂന്ന് സംഖ്യകളായാൽ, x - y - z നു തുല്യമായത്

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is: