App Logo

No.1 PSC Learning App

1M+ Downloads

Find the area of the triangle where AB= 4, BC = 6, ∠CAB = 120

1000114764.jpg

A12

B6√3

C8√3

D10

Answer:

B. 6√3

Read Explanation:

Area = 1/2 × ab × sinx : x< 90

= 1/2 × ab × sin(180 - x) : x>90

= 1/2 × 4 × 6 × sin (180 - 120)

= 1/2 × 24 × sin 60

= 12 ×3/2

= 63


Related Questions:

Find the area of the parallelogram with sides AB = 8, AC = 4, ∠ BAC = 30

1000114769.jpg

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

If xsin30°cos60° = sin45°cos45°, then the value of x is:

Find the value of sin235° + sin255°

In the figure, AB=4 centimetres, BC =5 centimetres. <B=90° cos C is: