App Logo

No.1 PSC Learning App

1M+ Downloads

Find the area of the triangle where AB= 4, BC = 6, ∠CAB = 120

1000114764.jpg

A12

B6√3

C8√3

D10

Answer:

B. 6√3

Read Explanation:

Area = 1/2 × ab × sinx : x< 90

= 1/2 × ab × sin(180 - x) : x>90

= 1/2 × 4 × 6 × sin (180 - 120)

= 1/2 × 24 × sin 60

= 12 ×3/2

= 63


Related Questions:

If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.
If tan A = 3, then what is the value of 3 sin A cos A?

Conert Radian to Degree :

4π3\frac{4\pi}{3}

In the figure <CAB=30°, <CPB=60°. AP 10 centimeters. Area of the rectangle ABCD is.............................. square centimeters.

WhatsApp Image 2024-11-30 at 10.23.08.jpeg
What is the value of cot 35° cot 40° cot 45° cot 50° cot 55°?