App Logo

No.1 PSC Learning App

1M+ Downloads

Find the area of the triangle where AB= 4, BC = 6, ∠CAB = 120

1000114764.jpg

A12

B6√3

C8√3

D10

Answer:

B. 6√3

Read Explanation:

Area = 1/2 × ab × sinx : x< 90

= 1/2 × ab × sin(180 - x) : x>90

= 1/2 × 4 × 6 × sin (180 - 120)

= 1/2 × 24 × sin 60

= 12 ×3/2

= 63


Related Questions:

IOf tanθ=2021tan\theta=\frac{20}{21}, then the Value of SinθCosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}

Find the Value ofcos30sin30sin60+cos60\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}

Find x if sinx=12sin x=\frac{1}{2}

If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

The value of sin238° – cos252° is: