App Logo

No.1 PSC Learning App

1M+ Downloads

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

A16

B72

C48

D64

Answer:

B. 72

Read Explanation:

Solution:

Given:

2x + y = 6

xy = 4

Formula:

(x + y)2 = x2 + y2 + 2xy

x3 + y3 = (x + y) (x2 + y2 - xy)

Calculation:

2x + y = 6

xy = 4

⇒ (2x + y)2 = 4x2 + y2 + 4xy

⇒ 62 = 4x2 + y2 + 4 ×\times 4

⇒ 4x2 + y2 = 36 - 16

⇒ 4x2 + y2 = 20

Now,

(2x)3 + y3 = (2x + y) (4x2 + y2 - 2xy)

⇒ 8x3 + y3 = 6 (20 - 2 ×\times 4)

⇒ 8x3 + y3 = 6 ×\times (20 - 8)

⇒ 8x3 + y3 = 6 ×\times 12

∴ 8x3 + y3 = 72


Hence option (B) is correct answer.


Related Questions:

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

If (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5, then (3a + 5b) : (9a - 2b) =?

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

When each side of a square was reduced by 2 metres, the area became 49 square metres. What was the length of a side of the original square?

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)