App Logo

No.1 PSC Learning App

1M+ Downloads

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

A16

B72

C48

D64

Answer:

B. 72

Read Explanation:

Solution:

Given:

2x + y = 6

xy = 4

Formula:

(x + y)2 = x2 + y2 + 2xy

x3 + y3 = (x + y) (x2 + y2 - xy)

Calculation:

2x + y = 6

xy = 4

⇒ (2x + y)2 = 4x2 + y2 + 4xy

⇒ 62 = 4x2 + y2 + 4 ×\times 4

⇒ 4x2 + y2 = 36 - 16

⇒ 4x2 + y2 = 20

Now,

(2x)3 + y3 = (2x + y) (4x2 + y2 - 2xy)

⇒ 8x3 + y3 = 6 (20 - 2 ×\times 4)

⇒ 8x3 + y3 = 6 ×\times (20 - 8)

⇒ 8x3 + y3 = 6 ×\times 12

∴ 8x3 + y3 = 72


Hence option (B) is correct answer.


Related Questions:

If x2+1/x2=23x ^ 2 + 1 / x ^ 2 =23 find the value of x+1/xx + 1 / x

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

image.png

If x1x=3x-\frac{1}{x} = 3, then the value of x31x3x^3-\frac{1}{x^3} is

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is: