App Logo

No.1 PSC Learning App

1M+ Downloads
(tan57° + cot37°)/ (tan33° + cot53° ) =?

Asin53° + cos33°

Btan53°× tan57

Csin53° × sin57°

Dcos57° × cos53°

Answer:

B. tan53°× tan57

Read Explanation:

Solution: Given: (tan57° + cot37°)/ (tan33° + cot53°) We know cot(A) = tan(90-A)​ So, [tan 33° = cot 57° and cot37° = tan 53° ] ⇒ (tan57° + tan 53°) / (cot 57° + cot 53°) ⇒ (tan57° + tan 53°) / (1/tan 57° + 1/tan 53°) ⇒ (tan57° + tan53°) / {(tan53° + tan57°)/tan53°× tan57°} ⇒ tan53° × tan57°


Related Questions:

If sinθ = 45 , Find the value of sin3θ
If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:

Find the area of the triangle where AB = 10cm, BC = 8cm, ∠CAB = 30

1000114764.jpg

Find the area of the triangle; AB = 5, BC = 8 and ∠CAB = 60

1000114764.jpg

Find the value of cos 120° cos 240° cos 180° cos 60°.