Challenger App

No.1 PSC Learning App

โ˜…
โ˜…
โ˜…
โ˜…
โ˜…
1M+ Downloads
The base radii of two cones are in the ratio 5:3 and their heights are equal. If the volume of the first cone 750๐… cu centimeters, then what is the volume of the second come cu. centimeters?

A250 ๐…

B270 ๐…

C370 ๐…

D350 ๐…

Answer:

B. 270 ๐…

Read Explanation:

Understanding Cone Volumes and Ratios

This problem involves calculating the volume of cones and understanding how ratios affect these calculations.

Key Formula for Cone Volume:

  • The volume of a cone is given by the formula: $V = \frac{1}{3}\pi r^2 h$, where '$r$' is the radius of the base and '$h$' is the height of the cone.

Given Information:

  • The ratio of the base radii of two cones is 5:3. Let the radii be $r_1$ and $r_2$. So, $\frac{r_1}{r_2} = \frac{5}{3}$.

  • The heights of the two cones are equal. Let the height be $h$. So, $h_1 = h_2 = h$.

  • The volume of the first cone ($V_1$) is $750\pi$ cubic centimeters.

Calculating the Volume of the Second Cone:

  1. Relate the volumes using the ratio of radii:
    The ratio of the volumes of the two cones can be expressed as:
    $\frac{V_1}{V_2} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2}$

  2. Simplify the ratio of volumes:
    Since $h_1 = h_2$, the $\frac{1}{3}\pi$ and $h$ terms cancel out:
    $\frac{V_1}{V_2} = \frac{r_1^2}{r_2^2} = \left(\frac{r_1}{r_2}\right)^2$

  3. Substitute the given ratio of radii:
    We know $\frac{r_1}{r_2} = \frac{5}{3}$. Therefore,
    $\frac{V_1}{V_2} = \left(\frac{5}{3}\right)^2 = \frac{25}{9}$

  4. Use the known volume of the first cone:
    We are given $V_1 = 750\pi$. Substitute this into the equation:
    $\frac{750\pi}{V_2} = \frac{25}{9}$

  5. Solve for $V_2$:
    Cross-multiply to find $V_2$:
    $25 \times V_2 = 750\pi \times 9$
    $V_2 = \frac{750\pi \times 9}{25}$

  6. Perform the calculation:
    $V_2 = 30\pi \times 9$
    $V_2 = 270\pi$ cubic centimeters.


Related Questions:

The two sides holding the right-angle in a right-angled triangle are 3 cm and 4 cm long. The area of its circumcircle will be:
6 เดธเต†เดจเตเดฑเดฟเดฎเต€เดฑเตเดฑเตผ, 8 เดธเต†เดจเตเดฑเดฟเดฎเต€เดฑเตเดฑเตผ, 1 เดธเต†เดจเตเดฑเดฟเดฎเต€เดฑเตเดฑเตผ เดตเดถเด™เตเด™เดณเตเดณเตเดณ เดฎเต‚เดจเตเดจเต เด˜เดจเดฐเต‚เดชเด‚ เด‰เดฐเตเด•เตเด•เดฟ เด’เดฐเต เดชเตเดคเดฟเดฏ เด˜เดจเดฐเต‚เดชเด‚ เดฐเต‚เดชเดชเตเดชเต†เดŸเตเดจเตเดจเต. เดชเตเดคเดฟเดฏ เด˜เดจเดฐเต‚เดชเดคเตเดคเดฟเดจเตเดฑเต† เด‰เดชเดฐเดฟเดคเดฒ เดตเดฟเดธเตเดคเต€เตผเดฃเตเดฃเด‚ เดŽเดจเตเดคเดพเดฏเดฟเดฐเดฟเด•เตเด•เตเด‚?
The ratio of length of two rectangles is 22 : 25 and the breadth of the two rectangles is 9 : 11. If the perimeter of the second rectangle is 160 cm and the length of the second rectangle is 14 cm more than its breadth, the find the area of the first rectangle?
What will be the percentage of increase in the area square when each of the its sides is increased by 10%?
15 เดธเต†เดจเตเดฑเต€เดฎเต€เดฑเตเดฑเตผ เด†เดฐเดฎเตเดณเตเดณ เด’เดฐเต เดฒเต‹เดน เด—เต‹เดณเดคเตเดคเต† เด’เดฐเตเด•เตเด•เดฟ 27 เดคเตเดฒเตเดฏ เดตเดฒเดฟเดชเตเดชเดฎเตเดณเตเดณ เดšเต†เดฑเตเด•เต‹เดณเด™เตเด™เตพ เด†เด•เตเด•เดฟ เดšเต†เดฑเต เด—เต‹เดณเด™เตเด™เดณเตเดŸเต† เด†เดฐเด‚ เดŽเดคเตเดฐเดฏเดพเดฏเดฟเดฐเดฟเด•เตเด•เตเด‚?