Challenger App

No.1 PSC Learning App

1M+ Downloads

Find the middle term in the expansion of [3x36]7[3-\frac{x^3}{6}]^7

AT4=1058x4,T5=3548x12T_4=\frac{105}{8}x^4, T_5=\frac{35}{48}x^{12}

BT4=1058x3,T5=3548x2T_4=\frac{-105}{8}x^3, T_5=\frac{35}{48}x^{2}

CT4=1058x4,T5=3548x12T_4=\frac{-105}{8}x^4, T_5=\frac{35}{48}x^{12}

D$T_4=\frac{-105}{8}x^2, T_5=\frac{35}{48}x^{2}$

Answer:

T4=1058x4,T5=3548x12T_4=\frac{-105}{8}x^4, T_5=\frac{35}{48}x^{12}

Read Explanation:

(n+1)2th;(n+12+1)th\frac{(n+1)}{2}^{th};(\frac{n+1}{2}+1)^{th}

7+12=82=4th;(4+1)th=5th\frac{7+1}{2}=\frac{8}{2}=4^{th} ;( 4+1)^{th}=5^{th}

Tr+1=nCranrbrT_{r+1}=^nC_ra^{n-r}b^r

T4=7C334(x36)3T_4=^7C_33^4(\frac{-x^3}{6})^3

=7!3!4!34×(x3)363=\frac{7!}{3!4!}3^4 \times \frac{(-x^3)^3}{6^3}

=7×6×5×4!3!×4!×3×3×3×36×6×6x9=\frac{7 \times 6 \times 5 \times 4!}{3! \times 4!} \times \frac{3 \times 3 \times 3 \times 3}{6 \times6 \times 6 } - x^9

=1058x4=\frac{-105}{8}x^4

T4=1058x4T_4=\frac{-105}{8}x^4

a=3

b=\frac{-x^3}{6}

n=7

r+1=5

r=4

n-r=3

=\frac{7 \times 5}x^{12}{8 \times 6}=\frac{35}{48}x^{12}

T5=3548x12T_5=\frac{35}{48}x^{12}


Related Questions:

x1x=3x-\frac1{x}=3;x≠0 ആയാൽ x4+1x4=?x^4+\frac1{x^4}=?

The factors of x3-4x2+x+6 is:

Examine the nature of the roots of the following quadratic equation:

3x2+8x+4=03x^2+8x+4=0

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}

If 3/11 < x/3 < 7/11, which of the following values can 'x' take?