Challenger App

No.1 PSC Learning App

1M+ Downloads

If x2+1x2=38x^2+\frac{1}{x^2}=38 , then what is the value of x1x\left| {x - \frac{1}{x}} \right|

A9

B6

C5

D4

Answer:

B. 6

Read Explanation:

Given:

x2 + 1x2\frac{1}{x^2} = 38

Formula:

(x1x)2=x2+1x22(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2

| x | = x

| -x | = x

Calculation:

According to the formula

(x1x)2=x2+1x22(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2

(x1x)2=382(x-\frac{1}{x})^2=38-2

(x1x)=36(x-\frac{1}{x})=\sqrt{36}

(x1x)=6(x-\frac{1}{x})=6

Now,

x1x\left| {x - \frac{1}{x}} \right| =  | 6 | = 6.

Shortcut Trick

x2+1x2=ax^2 + \frac{1}{x^2}=a then, x1x=a2x-\frac{1}{x}=\sqrt{a}-2

so if x2+1x2=38x^2+\frac{1}{x^2}=38 then x1x=382=36=6x-\frac{1}{x}=\sqrt{38-2}=\sqrt{36}=6

x1x\left| {x - \frac{1}{x}} \right| =| 6 | = 6


Related Questions:

a2+b2=65a^2+b^2=65, and ab=8ab=8 then find the value of a2b2a^2-b^2

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?

Line through the points (-2,6) and (4,8) is perpendicular to the line through the points (8,12) and (x,24). Find the value of x.
If x2+1/x2=98x ^ 2 + 1 / x ^ 2 = 98 find the value of x+1/xx + 1 / x