Challenger App

No.1 PSC Learning App

1M+ Downloads

a\overset{\rightarrow}{a} ഒരു ഏകക സദിശമാണ് , (xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x\overset{\rightarrow}{x} ന്ടെ വലിപ്പം എത്ര?

(xa).(x+a)=12(\overset{\rightarrow}{x} - \overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12

A√8

B√9

C√10

D√13

Answer:

D. √13

Read Explanation:

x.x+x.aa.aa.a=12\overset{\rightarrow}{x}.\overset{\rightarrow}{x}+ \overset{\rightarrow}{x}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}-\overset{\rightarrow}{a}.\overset{\rightarrow}{a}=12

x2a2=12|\overset{\rightarrow}{x}|^2-|\overset{\rightarrow}{a}|^2=12

x21=12|\overset{\rightarrow}{x}|^2-1=12

x2=13|\overset{\rightarrow}{x}|^2=13

x=13|\overset{\rightarrow}{x}|=\sqrt{13}


Related Questions:

a=βi+2j+2k,b=2i+2j+βk\overset{\rightarrow}{a}=\beta i+2j +2k , \overset{\rightarrow}{b} = 2i + 2j + \beta k എന്നീ സദിശങ്ങൾ ലംബങ്ങളായാൽ a+bab=|\overset{\rightarrow}{a}+\overset{\rightarrow}{b}|-|\overset{\rightarrow}{a}-\overset{\rightarrow}{b}|=

a\overset{\rightarrow}a ഒരു ഏക സദിശമാണ്,(xa).(x+a)=12(\overset{\rightarrow}{x}-\overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x-ന്ടെ വലിപ്പം എത്ര ?

02(2ti+3t2j)dt=\int_0^2(2ti+3t^2j)dt=

solve 4y"-25y' = 0
î + 2ĵ +3k̂ എന്ന സദിശത്തിന്ടെ ദിശ കോസൈൻസ് ഏത് ?