If a + b =6 and ab = 8 finda3+b3a^3+b^3a3+b3 A12B46C72D84Answer: C. 72 Read Explanation: (a+b)3=a3+b3+3ab+3ab2(a+b)^3=a^3+b^3+3a^b+3ab^2(a+b)3=a3+b3+3ab+3ab2a3+b3=(a+b)3−3ab(a+b)a^3+b^3=(a+b)^3-3ab(a+b)a3+b3=(a+b)3−3ab(a+b)=63−3×8(6)=6^3-3\times8(6)=63−3×8(6)=216−144=216-144=216−144=72=72=72 Read more in App