Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b =6 and ab = 8 finda3+b3a^3+b^3

A12

B46

C72

D84

Answer:

C. 72

Read Explanation:

(a+b)3=a3+b3+3ab+3ab2(a+b)^3=a^3+b^3+3a^b+3ab^2

a3+b3=(a+b)33ab(a+b)a^3+b^3=(a+b)^3-3ab(a+b)

=633×8(6)=6^3-3\times8(6)

=216144=216-144

=72=72


Related Questions:

If 4x - 3y = 12 and xy = 5 , then find the value of16x2+9y28\frac{16x^2+9y^2}{8}

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

If xy = 16 and x2+y2=32x^2+y^2=32then the value of x+y=?

What number is x if |x +2|=|x-5|?

If x2+1/x2=66 x^2+1/x^2=66 findx1/xx-1/x