App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

A350

B370

C270

D360

Answer:

B. 370

Read Explanation:

Solution:

Given:

a + b = 10 

37\frac{3}{7} of ab = 9

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

37\frac{3}{7} of ab = 9

⇒ ab = 9×(73)9\times(\frac{7}{3})

⇒ ab = 21

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 10 ×\times [102 - 3 ×\times 21]

⇒ a3 + b3 = 10 ×\times [100 - 63]

⇒ a3 + b3 = 10 ×\times 37 = 370.


Related Questions:

If x + y = 15 and xy = 14, then the value of x – y is :
Project method is best suitable for:

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?

image.png