App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

A350

B370

C270

D360

Answer:

B. 370

Read Explanation:

Solution:

Given:

a + b = 10 

37\frac{3}{7} of ab = 9

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

37\frac{3}{7} of ab = 9

⇒ ab = 9×(73)9\times(\frac{7}{3})

⇒ ab = 21

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 10 ×\times [102 - 3 ×\times 21]

⇒ a3 + b3 = 10 ×\times [100 - 63]

⇒ a3 + b3 = 10 ×\times 37 = 370.


Related Questions:

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

(x-y)=5 , x² -y² =55 ആയാൽ y യുടെ വില എന്ത്?
9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}