Challenger App

No.1 PSC Learning App

1M+ Downloads
image.png
image.png
image.png
image.png
image.png
image.png
image.png
2sec²A+ 4cosec²A - 2tan²A - 4cot²A find solution
A shadow of a tower standing on a level ground is found to be 40√3 meters longer when the Sun's altitude is 30° than when it is 60°. The height of the tower is:
If sec 44 cosec (3A-50°), where 44 and 34 are acute angles, find the value of A + 75.
Two angles are complementary. The larger angle is 6º less than thrice the measure of the smaller angle. What is the measure of the larger angle?
image.png

The value of sin252+2+sin2384cos2435+4cos247\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}

Find the value of Sec (-30o)+tan(-60o)

If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:

If tanθ + cotθ = 2 and θ is acute, then the value of tan100θ +cot100θ is equal to:

(tan57° + cot37°)/ (tan33° + cot53° ) =?

If tanθ=34tan\theta=\frac{3}{4} and θ is acute, then what is the value of sin θ

Find the value of

Sin0o×sin1o×sin2o×sin30...............Sin890isSin0^o\times{sin1^o}\times{sin2^o}\times{sin3^0}...............Sin89^0 is

If tan 45o + sec 60o = x, fine the value of x.

Cos1o.cos2o.cos3o.......................cos100o is equal to

Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°
What is the value of cos[(180° – θ)/2].cos[(180° – 9θ)/2] + sin[(180° – 3θ)/2].sin[(180° – 13θ)/2]?
image.png
image.png

In the given figure ABC=ABD,BC=BDthenCAB=\angle{ABC} = \angle{ABD}, BC = BD then \triangle{CAB} =\triangle___________

image.png
What is the area of an equilateral traingle whose each side is 14 cm long?
Express sin θ in terms of cot θ, where θ is an acute angle.

In the adjoining figure line l is parallel to m. What is the value of 2x+y ?

image.png

Find the value of cos 120° cos 240° cos 180° cos 60°.
image.png
Find (1 - cos² θ)(cot²θ + 1) - 1.

Find the value of cot2θcos2θ\sqrt{cot^2\theta-cos^2\theta}.

Find cos4Asin4A.cos^4 A - sin^4 A.

The least value of 8 cosec2θ + 25 sin2 θ is:

If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°)

Find the value of tan60tan151+tan60tan15\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}

What is the value of cot 35° cot 40° cot 45° cot 50° cot 55°?

Find x if 2sin2x - 1 = 0

If Cos 3θ = Sin (θ - 34°), then the value of θ as an acute angle is:

Find the Value ofcos30sin30sin60+cos60\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}

Find x if sinx=12sin x=\frac{1}{2}

If xsin30°cos60° = sin45°cos45°, then the value of x is:

The value of sin238° – cos252° is:

If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?
If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

If 3 sec2 x - 4 = 0, then the value of x (0 < x < 90°)

In the given figure, if PQ = 13 cm and PR = 12 cm then the value of sin θ + tan θ = ?

image.png

Find the value of sin235° + sin255°

IOf tanθ=2021tan\theta=\frac{20}{21}, then the Value of SinθCosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}