In the given figure ∠ABC=∠ABD,BC=BDthen△CAB=△\angle{ABC} = \angle{ABD}, BC = BD then \triangle{CAB} =\triangle∠ABC=∠ABD,BC=BDthen△CAB=△___________
In the adjoining figure line l is parallel to m. What is the value of 2x+y ?
Find the value of cot2θ−cos2θ\sqrt{cot^2\theta-cos^2\theta}cot2θ−cos2θ.
Find cos4A−sin4A.cos^4 A - sin^4 A.cos4A−sin4A.
The least value of 8 cosec2θ + 25 sin2 θ is:
If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°)
Find the value of tan60∘−tan15∘1+tan60∘tan15∘\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}1+tan60∘tan15∘tan60∘−tan15∘
Find x if 2sin2x - 1 = 0
Find the Value ofcos30∘−sin30∘sin60∘+cos60∘\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}sin60∘+cos60∘cos30∘−sin30∘
Find x if sinx=12sin x=\frac{1}{2}sinx=21
The value of sin238° – cos252° is:
The value of cosec230∘sin245∘+sec260∘tan60∘cosec245∘−sec260∘tan45∘\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}tan60∘cosec245∘−sec260∘tan45∘cosec230∘sin245∘+sec260∘ is:
If 3 sec2 x - 4 = 0, then the value of x (0 < x < 90°)
In the given figure, if PQ = 13 cm and PR = 12 cm then the value of sin θ + tan θ = ?
Find the value of sin235° + sin255°
IOf tanθ=2021tan\theta=\frac{20}{21}tanθ=2120, then the Value of Sinθ−CosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}Sinθ+CosθSinθ−Cosθ
What is the value of sin2 45° + cos2 45° ?
In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61}SinC=6160 and CosA=6061CosA=\frac{60}{61}CosA=6160, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}CotC+SecASinCtanA+cot(A+C)
If secθ=43=\frac{4}{3}=34 , what is the value of tan2 θ + tan4 θ?
If sinx=1237sinx=\frac{12}{37}sinx=3712 , then what is the value of tan x?
If CosA=35CosA=\frac{3}{5}CosA=53, Find tanA?
cosecθsecθ=?\frac{cosec\theta}{sec\theta}=?secθcosecθ=?
cotθ=?cot\theta=?cotθ=?
Conert Radian to Degree :
9π3\frac{9\pi}{3}39π
4π3\frac{4\pi}{3}34π
7π4\frac{7\pi}{4}47π
Convert Degree to Radian: 30
In the figure, AB=4 centimetres, BC =5 centimetres. <B=90° cos C is:
Which among the following statement is true in the figure?
In the figure central angle of arc APB is 120°. And the central angle of arc MQN is 50° what is the measure of <C?
In the figure AB= BC=CD=DE=AE. <C=<D=90°. what is the measure of <C?